Application Note 1019

Hydrogen

Suitable analyzers

- ELEMENTRAC ONH-p
- ELEMENTRAC OH-p

Used accessories

- Graphite crucibles (90180 and 90185)
- Suitable calibration material (NIST or other)

Application Settings

I) General

Furnace mode: OH Furnace cooling: 35/45 °C

Standby Flow: 0

A flow of 10 l/h could improve precision when there is a long time distance between 2 measurements.

II) Outgasing and stabilizing

Setting / Phase	Time [sec]	Power [W]	Flow [l/h]
Outgasing	60	4000	27
Stabilizing	75	3600	27

A second outgasing cycle or an increased outgasing time could improve the precision for very low hydrogen contents.

III) Analysis

Power duration: 80 sec Drift compensation: on Power: 3600 W Open furnace: yes

Flow: 27 l/h

Channel	Minimum time [sec]	Maximum time [sec]	Integration delay [sec]	Comperator factor [%]
Low and High H	50	80	15	0,5

IV) Postwaiting

Postwaiting time: 25 sec Furnace clean up: No

Hydrogen determination in steel samples

Sample preparation

Make sure that the surface of the steel is free from contaminations; otherwise clean the sample with acetone p.a. and let dry at atmosphere.

Procedure

- Prepare ELTRA analyzer (exchange anhydrone, sodium hydroxide, Schuetze reagent if necessary), clean furnace, sample drop mechanism, electrode tip (if necessary)
- Run three blanks with empty crucibles
- Calibrate the analyzer with suitable calibration material (NIST or other)
 - (1) Fill one empty inner crucible (90180) in one outer crucible (90185) and place them on the electrode tip, close furnace
 - (2) Weigh calibration material and place it in the sample drop mechanism and start analysis
 - (3) After analysis give the inner crucible into waste and fill in a new one. The outer crucibles can be used approximately 10 times

Repeat steps (1) – (3) at least three times; Mark the results and use the calibration function in the software.

-> Now start with the actual analysis.

Typical results				
Steel ELTRA 91400-1003 (LOT 812 C)				
Weight (mg)	ppm H			
1010.2	6.5			
1004.3	6.4			
1004.5	6.1			
1005.6	6.0			
1005.9	5.7			
1004.3	6.3			
1003.6	5.8			
1012.1	5.8			
1004.1	5.8			
1003.9	5.6			
Average values				
	6.0			
Deviation				
	0.3 / 4.9%			

Typical results				
ZRM Stahl H1 (BAM)				
Weight (mg)	ppm H			
994.0	1.0			
999.2	0.9			
992.2	0.8			
997.6	0.9			
995.0	1.1			
994.5	1.0			
992.8	0.8			
989.2	0.9			
996.7	1.0			
995,7	1.1			
Average values				
	1.0			
Deviation				
	0.1 / 10%			